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Summary. Using the quadratic response function at the ab initio SCF level of 
approximation we have calculated the relativistic corrections from the spin-orbit 
Hamittonian, H s°, to the indirect nuclear spin-spin coupling constants of XH4 
(X = C, Si, Ge, and Sn). We find that the spin-orbit contributions to JX-H are 
small, amounting only to about 1% for JSn-H- For the geminal H-H coupling 
constants the relativistic corrections are numerically smaller than for Jx n, but in 
some cases relatively larger compared to the actual magnitude of JH-.. We also 
investigate the use of an effective one-electron spin-orbit Hamiltonian rather than 
the full/_/so in the calculation of these corrections. 
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1 Introduction 

In a previous study [1] we reported correlated, Mutticonfiguration Linear Re- 
sponse (MCLR), nonrelativistic calculations of the indirect nuclear spin-spin 
coupling constants of CH4, Sill4, GeH4, and SnH4. These results demonstrated 
that further investigations are necessary in order to obtain better agreement with 
experiment, especially for the geminat H-H coupling constants. There are at least 
two obvious effects that might play an important role in the accurate determina- 
tion of the coupling constants, namely, relativistic effects and the effect of nuclear 
motion. Semi-empirical studies of Pyykk6 and Wiesenfeld [2] indicate that the 
relativistic effects particularly for the Sn-H coupling constant may be very large 
indeed. Using nonrelativistic extended Hiickel (EHT) [3] and relativistic extended 
Hiickel (REX) [2, 4, 5] they predicted a relativistic increase in the Jsn-H coupling 
constant in SnH4 of approximately 30%. The corresponding effect in GeH~ was 
found to be about 10%. 

However, there is, to our knowledge, no ab initio determinations of the relativ- 
istic corrections to the coupling constants of group IV tetrahydrides. Therefore, we 
have undertaken a study of one part of the relativistic correction, namely, the one 
originating from the spin-orbit operator. This electron-spin dependent part of 
the Dirac-Pauli Hamiltonian [6] is employed in the present calculations to obtain 
the lowest order spin-orbit corrections to the coupling constants of the series 
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XH~, X = C, Si, Ge, and Sn. The spin-orbit operator is included to first order 
in perturbation theory in conjunction with a nonrelativistic zeroth order wave 
function. Due to operator divergence, the scalar relativistic effects from another 
part of the Dirac-Pauli Hamiltonian, the spin-free mass-velocity and Darwin 
operators (MVD) cannot be incorporated into the present perturbative calcu- 
lations. 

Our primary aim is to estimate the magnitude of the spin-orbit correction to 
see if it can account for some of the remaining differences between our previous 
nonrelativistic calculations [1] and experiment. Besides, we wish to investigate 
how these compare to the relativistic corrections predicted by Pyykk6 and 
Wiesenfeld. Furthermore, we examine if the calculation of the two-electron 
spin-orbit contribution, which represent the largest bottleneck in this type of 
calculations, can be omitted. If this is possible one may obtain an inexpensive 
order-of-magnitude estimate of the spin-orbit correction from the screened one- 
electron term alone. 

2 Theory 

2.1 General considerations 

In the nonrelativistic limit three of the four contributions to the indirect NMR 
coupling tensors can be represented as second order energy expressions or as linear 
response functions. The nonrelativistic coupling constants in this study have been 
calculated by propagator methods. This theory [7-9], as well as its application to 
the calculation of coupling constants [10-12], is described elsewhere. Here we 
only state the form of the four perturbing operators relevant for the calculation 
of the coupling constant. These operators were first derived by Ramsey [13] and 
comprise 

the paramagnetic spin-orbit Hamittonian 

Hpso(N) #oeh -- IjN - )_2 7N ~ "  I,,; 
8~ 2 t'~e j jN 

(1) 

the Fermi contact Hamiltonian 

H F c ( N )  - -  #oegeh 
6nine ~j YN(~(FjN)Sj" IN; (2) 

the spin dipolar ttamiltonian 

laoeg~h S~ 
HsD(N) -- ~ 7 )'N 

3 (s~" r~N) (r~N" IN) -- r~ivsj2.. IN. 
rj~ 

(3) 

and the diamagnetic spin-orbit Hamiltonian 

HDso(N,K) - l~geZ (rjK rjN 
• 32~2m~ ~, 7NVKIN \ ~  ' ~ -  j rjK rjN 

1 r2K r@d] IK. 
r j½ rjN/ 

(4) 
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The contributions from the four operators to the isotropic couplin 9 constants are 
the traces of the following spin-spin coupling tensors: 

OlZj in nlZj..-~-I0 
.PSO= ( p o e  ~2 7 h  r \ J r j r (5) 
ONK \4rtme] - -  .¢oZ Eo --  E .  ' 

Ju~F': = \~-/'m~ /(~g~e°)2 --~ °+o y~ <OfEj6(r;N)sjtn><nlE;6(r;K)sjfO>Eo - -  E .  , (6)  

~D = ( ~ g o e o )  ~ 7NYK 
JNK \ ~ j  ~ Z 

n # O  

01ZJr~ - 3 5 In nlZJr--~K -- 3 r-~K / (7) 
)< F J N  - 

Eo -- E. 

and 

NK \4~t] 2m~ h \ r 3  ~ 1  r jr3 rj3u] 

As we have assumed a singlet ground state there are no contributions from cross 
P S O  S D  - terms such as JNK revolving a mixture of smglet and mplet  operators. However, 

the introduction of the spin-orbit  operator, which is a triplet operator, as an 
additional perturbing operator causes such cross terms to reappear in a third order 
perturbation expansion. The corrections to the coupling constants can be cal- 
culated using quadratic response functions [14-16] in a way similar to the 
calculations of relativistic corrections to the polarizabilities [17]. Modifying Eq. (5) 
of Ref. 1-17] to having only static perturbations we obtain an expression for the 
quadratic response function (in atomic units): 

l im ( ( A ;  V '°~=°, V~=O>>o+i~,o+i , :  ~ 

[(0tAlk>(<kl V ° ~ ' = ° I n >  - Ok,,<01 r°~'=°10>)(nl V~=°10> 
2 / 

kn > 0 1._ ~ k  O')n 

<0l V°~=°ln>(<nl r °~ =°lk> - ~k. (0l V '°' =°10>)(klAI0> + 
O) k 0.) n 

<0[ V ~ =°1 k>(<klAIn> - cSk,,<0lAI0>)<n[ V~=°I0> + 
( D k O )  n 

(OlAlk>(<kl V+::°ln> - 6k.<0l V'°::°lO>)(nt V +~ :°10> 

(DkO,) n 

<ol v =~ =°1 n>(<nt v ~=°tk > - ~.<ol v ~=°tO>)(klAlO > 
A 

(.O k (I) n 

-+ (01V°~=°lk>(<k[Aln> -- 6k.(OlAlO>)(n[V°~'=°lO>~ 
(9) 

J (Dk(:O n 

where c% = E. - Eo are excitation energies. 
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The spin-orbit corrections are then obtained using either of the three operators 
in Eqs. (t)-(3) as A or V °~1=° and the spin-orbit operator, / /so,  as V '~2=°. 

2.2 Corrections to the coupling constants 

Again, having a singlet ground state and using the fact that the quadratic response 
function in the static limit is symmetric in the perturbing operators we obtain in 
principle five corrections to the coupling constants. These corrections expressed in 
terms of the quadratic response functions are given below in expected descending 
order of importance. 

(a) ((HFc(N); HFc(/) ,  HS°))o,o, 

(b) ((Heso(N); HFc(K), HS°))o,o, 

(c) ((HFc(N); HsD(K), H s°))o,o, 

(d) ((Hvso(N); HsD(K), HS°))o,o, 

(e) ((HsD(N); HsD(K), HS°))o,o- 

Of these five response functions only two were calculated, namely, (b) and (d). The 
quadratic response function (a), which could be expected to give the largest 
contribution to the one-bond coupling constants is identically zero. This is shown 
below by application of the Wigner-Eckart theorem. The corrections (c) and (e) 
require a combination of three triplet operators, an option not yet implemented 
in the program. However, we expect (c) to be smaller than (b) as it involves the 
spin-dipolar operator which only gives a small contribution to the coupling 
constant. The contribution from the quadratic response function (e), which is 
quadratic in the spin-dipolar operator, is for the same reason expected to be 
negligible. 

Thus, to assess the importance of the spin-orbit corrections to the coupling 
constant we argue that it suffices to calculate the terms (b) and (d). They will be 
denoted as the PSO-FC cross term jeso-vc-so and the PSO-SD cross term 
jeso-sD-so respectively. 

2.3 The ((Hvc(N); tIvc(K), Hs°))o,o term 

From the sum over states formulation in Eq. (9) we see that the correction term (a) 
in Sect. 2.2 has products of transition matrix elements of the type 

( S°]HFc(N)[ T x TIHFc(K)[ T '  x T ' l H S ° l s ° ) .  (10) 

As H s° is a vector operator in the electronic spin space with components 
Sx, Sy, Sz oc S+ + S_, S+ - S_ , Sz the states IT ) and [ T ' )  must be triplet states 
such that the H s° operator can couple back to the singlet ground state. 

The Fermi contact operator, too, is a vector operator in the electronic spin space 
with components (proportional to) 

is ½ H C<5( + H, C< .(S+--S-)X,, H[cocSd . (11) 
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, . t r F C - F C  S O \  Therefore, to obtain, e.g., the diagonal element, ta N~ )x~, of the coupling tensor 
we must calculate products of the type 

Jxxoc (S°]S+ + S- IT) (TIS+ + S-]T ' ) (T ' IHs°]s  °) 

= (S°IS+ I T ) ( T  IS+ I T ' ) ( T ' I H S ° I s ° )  

+ (S°IS+ IT ) (T tS - [Z ' ) (Z ' lHS° l  S°) 

+ (S°IS_IT)(TIS+IT' ) (T ' IHS°IS°)  
+ (S°]S_IT)(TIS_JT ' ) (T ' IHs° fs° ) .  (12) 

Since the application of S+ (S_) shifts Ms by 1 ( - 1) the first and last term after the 
equality sign in Eq. (12) will not contribute to Jxx as this would require the state 
IT') to be at least a quintet state with M~ = 2 ( -2) ,  from which the spin-orbit 
operator cannot couple back to the singlet ground state. The contributions to 
Jx~ therefore reduce to 

dx~ oc (S°]S+ 17' ) ( T  IS-IT ' ) ( T  ']nS°] S °) 

+ (S°l S_ I T ) ( T  IS+ I T ' ) (T ' IHS°  I S°). (13) 

Application of the Wigner Eckart Theorem [18] gives 

(S°IS+ IT -a)  = (Sit SII T)x/2 (14) 
and 

( T - a l S - I T  °) = (TtIStt T) , ,~ .  (15) 

Thus the first term in Eq. (13) becomes 

(S O IS+ IT ) ( T  IS-IT ' ) ( T  '[HS°l S °) = 2(S It Stt T)(T II S 11Z)( T °]HS° 1 S°).  
(16) 

Similarly, the second term becomes 

<S°]S-IT + I>(T + 1]  S+ IT °><T o ]HSO I sO> 

= - 2(SI[SIf T)(T fl Sir T)< r ° IHs°Is°> (17) 

and the two terms in Eq. (13) which contribute to J~x thus cancel. The same applies 
to the Jyy component of the coupling tensor. By examination of J~ component 
we find 

Jz~ oc (S°[S~[ T °><T °[Sz[ T ' °>( r ' ° [Hs° ] s°>  (18) 

as the S~ operator does not alter the Ms value. The matrix element ( T  °[S~]T ,o) is 
proportional to M~ and thus all contributions to J~ vanish. The same arguments 
apply to all permutations of these operators in Eq. (9), and therefore the quadratic 
response function ((Hvc(N); HFc(K), HS°))o,o vanishes. 

2.4 One- and two-electron terms of H s° 

The spin-orbit operator including both the one-electron and the two-electron 
part is 

HSO_ gehe z ( ~  ZN (2si + sj)" lij~ 
327~2eomZc2 \ .~  ~ ~ ss'lJN-- 2 r~ ]" (19) 

• i < j  
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The first term in Eq. (19) can be viewed as the interaction of electron j 's  spin 
magnetic moment with its angular moment due to the motion of the electron 
relative to the charged nucleus. For  this one-electron operator we use the symbol 
H s°(1). The last two terms constitute a two-electron operator, H s°(2), composed of 
the sp in-own-orb i t  interaction (the last term), i.e. electron j 's  spin-magnetic 
moment coupled to its own orbital motion due to its motion relative to electron i, 
and the spin-other-orbit  interaction being electron i's spin-magnetic moment 
coupled to the orbital magnetic moment of electron j [6]. 

The effect of the two-electron operator can be construed as a shielding 
of the actual field from the nucleus felt by electron j thus reducing the one- 
electron part  [19]. This effect may be mimicked by the introduction of an effective 
nuclear charge, Zorn, such that Eq. (19) is replaced by an effective one-electron 
operator 

Heft _ gehe z ~ ZN(eff) 
32rCZeome2c2 ,.~ Z --'-5---- sj'IjN" (20) j rjN 

It is assumed that all the electrons in the molecule experience the same effective 
nuclear charge. Equating (20) and (19) we may now obtain an expression for the 
effective nuclear charge 

ZN (2Sl + sj)'lij ZN(eff) 
yy-r   tj - 2 = 2 

j rjlv i<j r~ N j rjN -7-- 

o r  

(21) 

_ ~ (2s, + sj).lq ~ IjN 
i<j r~ = ~N (ZN(eff) - ZN) • sJ "=5-'rjN (22) 

For  an atom, the sum over the nuclei reduces to a single term, and the effective 
nuclear charge, Neff, can  be found from the ratio of the two-electron and one- 
electron terms. For  molecules, however, the sum over N in Eq. (22) does not in 
general reduce to a single term. Using the assumption [20-22] that the effective 
nuclear charge for hydrogen equals the nuclear charge, i.e. that hydrogen nuclei are 
not shielded, we can, for the XH4 molecules, obtain a reduction and an expression 
for the effective nuclear charge of the central atom 

Dividing by Zx gives 

_ ~, ( 2 & - - s j ) ' l i j  

i<j r3 

ljx ~j Sj" "~3 
• r j x  

= (Zx(eff) - -  Z x ) .  (23) 

HSO(2), 
Zx(eff) = 1 + HSO(l~ j Zx. (24) 

In H s°(1) the contributions from the hydrogen nuclei are excluded, whereas in 
H s°°) they are retained. Note, however, that both one-electron operators include 
a sum over all electrons in the molecule. 

For  computational reasons we have, in the calculations of Zx(eff), used a 
slightly modified version of Eq. (24), in which H s°°) is replaced by H s°°) such 
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that Zx(eff) is calculated as 

Z~(eff) = (1 
HSO(Z)~ 

+ H- )zx. 
\ 
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(25) 

3 Computational details 

All calculations were performed with the H E R M I T / S I R I U S / R E S P O N S E  
MCSCF programs [23-26] at the SCF (RPA) level of approximation. The basis 
sets and geometries are, except for Si, identical to the ones used in the nonrelativ- 
istic calculations on the same molecules r l] .  The basis for Si used in the previous 
calculations turned out to give a poor description of the p-space due to unbalanced 
contractions. Therefore, we recalculated the non-relativistic coupling constants for 
Sill4 as well as the spin-orbit  corrections using a basis derived from triple zeta 
valence basis for Si of Ahlrichs and co-workers [27]. The basis set for Si employed 
here is given in Appendix 1. 

4 Results and discussion 

As explained in Sect. 2.2 we have calculated the jPso ~-c so and jPso sD-so terms. 
However, the jPso-sD-so term turned out to be insignificant, varying from 0.1-10% 
(SnH4-CH4) of the jeso-vc so term. This could have been anticipated from the 
knowledge of the relative importance of the nonrelativistic contributions, of which 
the Fermi contact term is the overall dominant contribution to Jx  H and the spin 
dipolar term is negligible. Nevertheless, we have included the sum of both correc- 
tion terms in Tables 1-3. 

Tables 1 and 2 show the one-bond and the two-bond geminal coupling 
constants calculated nonrelativistically [1], as welt as the total spin-orbi t  correc- 
tion to the coupling constants. Table 3 displays the one-electron and two-electron 
spin-orbit  correction contributions as well as the effective nuclear charge cal- 
culated according to Eq. (25). 

4.1 One-bond couplings' 

The spin-orbi t  correction is only important for SnH4, yet it is merely 1% of the 
total coupling constant even in this case. When added to the nonrelativistic RAS 
B value the spin orbit correction brings us further away from the experimental 
value although the agreement is still good. As can be seen from Table 1 the RAS 
B value is approximately off by 2% compared to the experiment, whereas the 
spin-orbi t  corrected value deviates by about 3% from the experimental result. This 
does leave some room for other corrections, including scalar relativistic effects. The 
latter are expected to increase the numerical value of the coupling constant. 

For  the three lightest molecules CH~-GeH4 the spin-orbit  corrections are very 
small, though comparable in magnitude to the non-contact terms. At first glance 
Table 1 seems to show that the spin orbit correction is larger for CH¢ than for 
Sill4. However, taking into account the different gN-factors for 13C and 29Ge 
(9N(13C) = 1.4048 and gN(Z9Si) = 1.11058) we find similar corrections for the two 
molecules. 
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Table 1. Nonrelativistic one-bond indirect nuclear spin-spin 
orbit corrections to them 

S. Kirpekar et al. 

coupling constants, JX-H, in Hz, and spin 

Molecule Approx. jFC jSD jPso jDSO jNRb jsoc jExp. 

CH4 RPA 157.90 - 0.23 1.39 0.25 159.31 - 0.058 120.80 
CAS B 123.53 0.02 1.48 0.27 125.30 

Sill4 RPA - 230.81 0.7I 0.33 -- 0.02 - 229.79 0.059 -202.5 ° 
CAS B -- 186.80 0.53 0.20 - 0.03 - 186.10 

GeH~ RPA -- 126.5 0.18 0.23 -- 0.0t - 126.10 0.071 --97.6 f 
RAS B -- 97.86 0.10 0.21 -- 0.0t -- 97.56 

SnH4 RPA - 2184.39 1.21 6.27 - 0.03 -- 2176.94 21.i73 -1930  ~ 
RAS B -- 1897.65 0.87 5.52 -- 0.03 -- 1891.29 

"The nonrelativistic values are taken from Ref. [10] for CH4 and from Ref. [ i ]  for GeH4, Sill4, and 
SnH4. The labels CAS B and RAS B for the correlated results refer to the MCSCF wave functions used 
as references in the calculations; see Ref. [ I ]  
b jNR is the sum of the four nonrelativistic Ramsey terms, Eqs. (5)-(8) 
c jRC iS the relativistic correction, calculated as the sum of the two cross terms J PRo F~so and jPRo SD~O 

d The equilibrium value at re = 1.0858 A obtained from an analysis of the temperature dependence of 
the couplings in CH4 isotopmers [39] 
° From Ref. [40] 
f From Ref. [41] 

Table 2. Nonrelativistic geminal proton-proton indirect nuclear spin-spin coupling constants, Jn H, in 
Hz, and spin-orbit  corrections to them 

Molecule Approx. jvc jSD jPSO jDSO jNRb jsoc j Exp.d 

CH4 a RPA -- 27.69 0.44 3.63 - 3,54 - 27.16 0.004 - 12.4 
CAS B -- 15.73 0.35 3.59 -- 3.51 -- 15.30 

Sill4 RPA - 0.81 0.05 1.87 2.37 - 1.25 0.006 
CAS B -- 1.17 0.05 1,85 - 2.34 -- 1.63 

GeH4 RPA -- 0.57 0.06 2.52 - 4.84 -- 2.83 0.530 
RAS B 2.18 0.05 2.50 -- 4,82 -- 0.09 

SnH4 RPA 2.45 0.00 2.93 - 4.80 0.58 0.121 t5.3 
RAS B 3.38 0.01 2.91 - 4.88 1.42 

~-~ See corresponding footnotes to Table t 
d From Ref. [42] 

R e l a t i v i s t i c  ef fec ts  a n d  c o r r e l a t i o n  effects  a r e  in g e n e r a l  n o t  a d d i t i v e  [17,  28] .  I n  

t h i s  c o n n e c t i o n  i t  is i m p o r t a n t  to  n o t e  t h a t  t h e  s p i n - o r b i t  c o r r e c t i o n s  a r e  ca l -  

c u l a t e d  a t  t h e  R P A  level.  A s  it  is we l l  e s t a b l i s h e d  [1,  29, 11, 30 ]  t h a t  c o r r e l a t i o n  

ef fec ts  a r e  i n d e e d  i m p o r t a n t  f o r  c o u p l i n g  c o n s t a n t s ,  w e  a n t i c i p a t e  t h a t  t h e  c o r r e c -  

t i o n s  w o u l d  c h a n g e  if t h e y  w e r e  t o  b e  c a l c u l a t e d  a t  a c o r r e l a t e d  level .  I n  fact ,  w e  

h a v e  p r e v i o u s l y  s e e n  t h a t  i n c l u s i o n  o f  c o r r e l a t i o n  r e d u c e s  t h e  m a g n i t u d e  o f  t h e  



Spin-orbit corrections to the indirect nuclear s p i n , p i n  coupling constants 43 

Table 3. One- and two-electron spin-orbit  corrections, jPSO-FC+SD SO, to the one-bond, Jx-H, and 

two-bond, Jn-m coupling constants 

Molecule Coupling jVSO-FC+SD-SOO)a jVSO-FC+SD sotz)~ Zx(eff)b Zx(eff, Slater)C 

constant [Hz] [Hz] 

c g 4  Jx-l-i - 0.096 0.038 3.63 3.25 
JH ~ 6.79x 10 -3 -- 3.03 x 10 .3 3.32 

Sil l ,  Jx-H 0.0876 -- 0.028 9.53 4.14 
JH H 7.54x 10 -3 - 1.58x 10 -:~ 11.07 

GeH¢ Jx n 0.118 - 0.044 20.46 5.65 
JH-~ 63.50 x 10 -3 - 10.54 x 10 -3 26.69 

SnH4 Jx-H 24.41 - 3.261 43.31 5.65 
JH H 128.25 x 10 "3 - 8.2t x 10 .3 46.80 

"The sum of the terms jPso-~:c-so and jPsO-SD-SO obtained by using only H s°(1) or  H sO(2), respec- 

tively, in Eq. (9) 
u The effective nuclear charge is determined from Eq. (25) 

Zx(eff, Slater) = Zx - as~,ter, where ers~,to~ is the shielding of the outermost p electron of the central 
atom 

relativistic corrections for another molecular property, the dynamic dipole polar- 
izability [17] by approximately a factor of two. However, we do not expect that 
inclusion of correlation will significantly change the main conclusion of this study, 
namely, that the contributions from Hso to the X H couplings are small. 

Pyykk~5 and Wiesenfeld predicted a total relativistic effect of about 30% [2] for 
Jsn H and approximately 10% for JGe-~. When comparing their results with the 
present investigation it must be kept in mind that our calculations do not include 
scalar relativistic effects and that we only include the effect of Hso perturbatively. 
It is therefore probably more illuminating to compare the Ksp term found by 
Pyykki5 and co-workers [2, 5, 31] to the spin-orbit correction in this work. They 
found that this term reduces the numerical value of the 1JHg_ c coupling constant 
in Hg(CH3)4 by 1.7%, and the 1Jpb_R in PbH4 by approximately 9%. These 
numbers are comparable in magnitude and sign to the spin-orbit corrections 
reported here. 

However, our results do not leave room for relativistic corrections of the order 
of 30% estimated by Pyykk/5 and Wiesenfeld. This diagreement may be caused 
by some inconsistency in the comparison of the results obtained with two different 
senti-empirical methods, namely, EHT and REX. The EHT method used by 
Pyykki5 and co-workers [2, 4, 5] is parametrized to approximate nonrelativistic. 
Hartree-Fock calculations, for coupling constants to approximate RPA, whereas 
REX is parametrized to approximate the corresponding relativistic methods. The 
extended Hiickel [2, 5] results are often in poor agreement with RPA calculations 
employing larger basis sets [1, 32]. It remains to be seen if there is a similar 
difference between REX results and results of relativistic ab initio RPA calculations. 
Only if this is the case one can attribute differences between EHT and REX 
couplings to pure relativistic effects. That is, only then can we expect the difference 
between EHT and REX results to give a cancellation of the errors inherent in the 
two methods. 
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4.2 Geminal couplings 

The absolute magnitude of the corrections to the geminal coupling constants is 
smaller than the one-bond couplings. Again GeH4 seems to drop out of line, the 
spin orbit corrections being larger than for SnH4. The importance of the corrections 
to J (H-H)  is, however, more difficult to establish as the question arises with which 
number we should compare. Comparison with the RPA results gives, for Sill4 and 
SnH¢, a smaller relative correction than comparison with the CAS B/RAS B results. 
For GeH4 the picture is opposite. Indeed, for GeH4 the spin-orbit correction is 
larger than the total nonrelativistic RAS B result. If we compare with the experi- 
mental numbers we find yet another conclusion. However, no matter with which of 
the nonrelativistic results we compare the relative magnitudes of the spin-orbit 
corrections are larger for the H - H  couplings than for the X H couplings. 

4.3 Comparison of the one- and two-electron contributions, effective 
nuclear charge 

Calculations of the spin orbit corrections to the coupling constants using both the 
full H s° and H s°(1) in Eq. (9) make it possible to estimate the effective nuclear 
charge, Zn(eff). Taking the ratio of the corrections computed with H s° and H s°(1), 
respectively, and multiplying this ratio with Zx gives according to Eq. (25), an 
estimate of Zx(eff). Ideally, both X-H and H - H  coupling should give the same 
effective nuclear charge. From Table 3 we see that the effective nuclear charges 
obtained from the two coupling constants agree quite well for CH4 and SnH,  
whereas for Sill4 and GeH~ the agreement is less satisfactory. This could indicate 
that approximating ZH(eff) with 1 does not hold for the two Iatter molecules. 
Another possibility is the obvious: the assumption that one can replace the full 
spin-orbit operator with an effective one-electron operator does not hold - or at 
least the simplified version, that all electrons experience the same ZN(eff) in an 
atom-molecule is inadequate. 

If we compare the effective nuclear charge calculated according to Eq. (25) 
with the effective nuclear charge calculated from the Slater rules, i.e. 
Zx(eff, Slater) = ZN - -  O - S l a t e r ,  where O'Slater is the shielding for the outermost p elec- 
tron of the central atom, we can see that the Slater effective nuclear charge is much 
too small for all molecules but CH4. This is in accordance with the conclusions 
reached by Abegg [22] who calculated spin-orbit coupling constants for a number 
of molecules containing first row atoms. There is an overall trend, most pro- 
nounced in the case of geminal two-bond couplings, indicating that the two- 
electron term becomes less important with increasing Zx. Hinkley et aI. [33] made 
the same observation for the spin orbit coupling constants. 

5 Conclusions 

The results presented here indicate that spin-orbit effects do not make a significant 
contribution to the isotropic indirect nuclear spin-spin coupling constants of the 
XH~ molecules for X = C, Si, Ge and Sn. One may argue that a perturbative 
treatment of the spin-orbit operator cannot correctly reproduce this effect. How- 
ever, Nakatsuji and co-workers [34] did ab initio calculations of the first order 
spin-orbit correction to chemical shieldings of methyl and hydrogen halides. 
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They found large contributions from the one-electron part of the spin-orbit  
Hamiltonian, which accounted for a major fraction of the differences between 
experiments and nonrelativistic calculations. It seems unlikely that a perturbative 
treatment of the spin orbit correction is justified for one set of N MR parameters 
but not for the other; so, we believe that the present results are indicative of the 
magnitude of the spin-orbit  corrections. The main reason that a perturbative 
approach gives large corrections to the shieldings is most likely that the Fermi 
contact operator, which already contributes to the coupling constant now also 
contributes to the shieldings via the spin-orbit  operator. 

One further comment which may be appropriate here is that we only have 
included one of the possible relativistic correction terms. The mass-velocity and 
Darwin (MVD) operators give rise to direct as well as indirect corrections to the 
coupling constants. The indirect effect is related to the relativistic bond length 
contraction. However, this correction is already included in the present calcu- 
lations as we report the couplings at experimental geometries. Moreover, it seems 
that the effect of a bond shortening generally is to reduce the numerical value of the 
coupling constant [35 37] which is the opposite of the effect expected from the 
results of Pyykk/5 and Wiesenfeld [2]. The direct effect of the MVD operator 
should in principle be calculated in the same way as the spin-orbi t  correction. 
Unfortunately, due to the unbounded nature of the MVD operators, we cannot 
apply the method used here to find the scalar relativistic corrections. 

It is not possible a priori to predict which of the operators, the MVD or the 
spin orbit operator, of the Dirac-Pauli  Hamiltonian will give the largest correc- 
tions to the coupling constants. Until full relativistic calculations are perforrned we 
do not know if the spin-orbit  corrections reported here constitute a major part of 
the total relativistic correction. However, one point supporting that the relativistic 
corrections, including the spin-orbit  corrections, probably are not very large is 
that we in fact only have room for rather small corrections to Jx n when we 
compare the nonrelativistic results with experiments. 

From preliminary studies of the geometry dependence of the coupling con- 
stants in the XH4 molecules we have indications that vibrational effects may give 
nonnegligible corrections especially to geminal H - H  couplings. Depending on the 
size and sign of these corrections we may have room for a larger total relativistic 
correction. A similar effect could result if we were to use basis sets of even higher 
quality than those of Ref. [1]. 

A second conclusion arising from this study is that the use of an effective 
one-electron spin-orbi t  operator is possible if only rough estimates of the 
spin-orbi t  effects are wanted. The choice of ZN(eff) is the crucial point in this 
connection. The values of Zx(eff) found in this study (see Table 3) cannot be 
reproduced by the use of the Slater rules [38] for the outermost p-electron. It is 
probable that different values of Z~(eff) must be applied for the same atom, 
depending on which property one wishes to calculate. However, it seems that 
Zu(eff) for a given atom and a given property is roughly the same in all molecules 
[22, 33]. As the one-electron spin-orbit  correction is always larger then the total 
spin-orbi t  correction, an inexpensive way to establish the importance of the 
spin orbit corrections would be to calculate the one-electron term first. If this term 
is important  one can subsequently add the two-electron term. 

Note added in proof 
We have recently found that uncontracting the Sn basis set of Ref. [ t ]  for SnH4 
reduces the magnitude of the non-relativistic contribution to the Js~-H coupling 
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c o n s t a n t  by  a b o u t  200 H z  at  the  c o r r e l a t e d  level of  a p p r o x i m a t i o n  m a k i n g  it  e q u a l  
to  a b o u t  - 1700 Hz,  thus  l eav ing  r o o m  for  a b o u t  a 10% re la t iv i s t ic  c o r r e c t i o n  (see 
t he  d i s cus s ion  in Sect.  5). 
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Appendix 1 

Basis for Si, derived from Ref. [27], by addition of uncontracted s and d functions 

s-space p-space d-space 

88385228.8200 1.00000000 

13259852.3243 1.00000000 

1989288.93753 1,00000000 

298440.007295 1.00000000 

44773.3580780 1.00000000 

6717.1992104 0.00432060 
I528.8960325 0.02218710 
432.5474659 0,08648925 
140.6150523 0.24939890 
49.8576367 0.46017197 
18.4349749 0.34250237 

86.5338861 0.02130006 
26.6246068 0.09467614 
4.4953057 --0.32616265 

2.1035046 1.39808039 
1.106095 0.63865787 

0.2370175 1.00000000 

0.0857034 1.00000000 

394.4750363 0.00262857 24.0000000 1.0000000 
93.1376831 0.02055626 
29.5196087 0.09207026 6.00000000 1.0000000 
10.7816638 0.25565890 
4.1626575 0.42111707 1 .4551006  1.0000000 
1.6247973 0.34401746 

0.48100000 1.0000000 
0.5430666 1.000000000 

0.15900000 1.0000000 
0.2058207 1.000000000 

0.04000000 1.0000000 
0.0700535 1.00000000 
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